zydis/VerteronDisassemblerEngine/VXInstructionFormatter.cpp

604 lines
18 KiB
C++

/**************************************************************************************************
Verteron Disassembler Engine
Version 1.0
Remarks : Freeware, Copyright must be included
Original Author : Florian Bernd
Modifications :
Last change : 22. October 2014
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
**************************************************************************************************/
#include "VXInstructionFormatter.h"
#include "VXDisassemblerUtils.h"
#include <cstdarg>
#include <cctype>
namespace Verteron
{
namespace Disassembler
{
const char* VXBaseInstructionFormatter::m_registerStrings[] =
{
/* 8 bit general purpose registers */
"al", "cl", "dl", "bl",
"ah", "ch", "dh", "bh",
"spl", "bpl", "sil", "dil",
"r8b", "r9b", "r10b", "r11b",
"r12b", "r13b", "r14b", "r15b",
/* 16 bit general purpose registers */
"ax", "cx", "dx", "bx",
"sp", "bp", "si", "di",
"r8w", "r9w", "r10w", "r11w",
"r12w", "r13w", "r14w", "r15w",
/* 32 bit general purpose registers */
"eax", "ecx", "edx", "ebx",
"esp", "ebp", "esi", "edi",
"r8d", "r9d", "r10d", "r11d",
"r12d", "r13d", "r14d", "r15d",
/* 64 bit general purpose registers */
"rax", "rcx", "rdx", "rbx",
"rsp", "rbp", "rsi", "rdi",
"r8", "r9", "r10", "r11",
"r12", "r13", "r14", "r15",
/* segment registers */
"es", "cs", "ss",
"ds", "fs", "gs",
/* control registers */
"cr0", "cr1", "cr2", "cr3",
"cr4", "cr5", "cr6", "cr7",
"cr8", "cr9", "cr10", "cr11",
"cr12", "cr13", "cr14", "cr15",
/* debug registers */
"dr0", "dr1", "dr2", "dr3",
"dr4", "dr5", "dr6", "dr7",
"dr8", "dr9", "dr10", "dr11",
"dr12", "dr13", "dr14", "dr15",
/* mmx registers */
"mm0", "mm1", "mm2", "mm3",
"mm4", "mm5", "mm6", "mm7",
/* x87 registers */
"st0", "st1", "st2", "st3",
"st4", "st5", "st6", "st7",
/* extended multimedia registers */
"xmm0", "xmm1", "xmm2", "xmm3",
"xmm4", "xmm5", "xmm6", "xmm7",
"xmm8", "xmm9", "xmm10", "xmm11",
"xmm12", "xmm13", "xmm14", "xmm15",
/* 256 bit multimedia registers */
"ymm0", "ymm1", "ymm2", "ymm3",
"ymm4", "ymm5", "ymm6", "ymm7",
"ymm8", "ymm9", "ymm10", "ymm11",
"ymm12", "ymm13", "ymm14", "ymm15",
/* instruction pointer register */
"rip"
};
void VXBaseInstructionFormatter::internalFormatInstruction(const VXInstructionInfo &info)
{
// Nothing to do here
}
VXBaseInstructionFormatter::VXBaseInstructionFormatter()
: m_symbolResolver(nullptr)
, m_outputStringLen(0)
, m_uppercase(false)
{
}
VXBaseInstructionFormatter::VXBaseInstructionFormatter(VXBaseSymbolResolver *symbolResolver)
: m_symbolResolver(symbolResolver)
, m_outputStringLen(0)
, m_uppercase(false)
{
}
const char* VXBaseInstructionFormatter::formatInstruction(const VXInstructionInfo &info)
{
// Clears the internal string buffer
outputClear();
// Calls the virtual format method that actually formats the instruction
internalFormatInstruction(info);
if (m_outputBuffer.size() == 0)
{
// The basic instruction formatter only returns the instruction menmonic.
return Internal::VDEGetInstructionMnemonicString(info.mnemonic);
}
// Return the formatted instruction string
return outputString();
}
VXBaseInstructionFormatter::~VXBaseInstructionFormatter()
{
}
void VXBaseInstructionFormatter::outputClear()
{
m_outputStringLen = 0;
}
char const* VXBaseInstructionFormatter::outputString()
{
return &m_outputBuffer[0];
}
void VXBaseInstructionFormatter::outputAppend(char const *text)
{
// Get the string length including the null-terminator char
size_t strLen = strlen(text) + 1;
// Get the buffer size
size_t bufLen = m_outputBuffer.size();
// Decrease the offset by one, to exclude already existing null-terminator chars in the
// output buffer
size_t offset = (m_outputStringLen) ? m_outputStringLen - 1 : 0;
// Resize capacity of the output buffer on demand and add some extra space to improve the
// performance
if (bufLen <= (m_outputStringLen + strLen))
{
m_outputBuffer.resize(bufLen + strLen + 512);
}
// Write the text to the output buffer
memcpy(&m_outputBuffer[offset], text, strLen);
// Increase the string length
m_outputStringLen = offset + strLen;
// Convert to uppercase
if (m_uppercase)
{
for (size_t i = offset; i < m_outputStringLen - 1; ++i)
{
m_outputBuffer[i] = toupper(m_outputBuffer[i]);
}
}
}
void VXBaseInstructionFormatter::outputAppendFormatted(char const *format, ...)
{
va_list arguments;
va_start(arguments, format);
// Get the buffer size
size_t bufLen = m_outputBuffer.size();
// Decrease the offset by one, to exclude already existing null-terminator chars in the
// output buffer
size_t offset = (m_outputStringLen) ? m_outputStringLen - 1 : 0;
// Resize the output buffer on demand and add some extra space to improve the performance
if ((bufLen - m_outputStringLen) < 256)
{
bufLen = bufLen + 512;
m_outputBuffer.resize(bufLen);
}
int strLen = 0;
do
{
// If the formatted text did not fit in the output buffer, resize it, and try again
if (strLen < 0)
{
m_outputBuffer.resize(bufLen + 512);
return outputAppendFormatted(format, arguments);
}
// Write the formatted text to the output buffer
assert((bufLen - offset) > 0);
strLen =
vsnprintf_s(&m_outputBuffer[offset], bufLen - offset, _TRUNCATE, format, arguments);
} while (strLen < 0);
// Increase the string length
m_outputStringLen = offset + strLen + 1;
// Convert to uppercase
if (m_uppercase)
{
for (size_t i = offset; i < m_outputStringLen - 1; ++i)
{
m_outputBuffer[i] = toupper(m_outputBuffer[i]);
}
}
va_end(arguments);
}
void VXBaseInstructionFormatter::outputAppendAddress(const VXInstructionInfo &info,
uint64_t address, bool resolveSymbols)
{
uint64_t offset = 0;
const char* name = nullptr;
if (resolveSymbols)
{
name = resolveSymbol(info, address, offset);
}
if (name)
{
if (offset)
{
outputAppendFormatted("%s+%.2llX", name, offset);
} else
{
outputAppend(name);
}
} else
{
if (info.flags & IF_DISASSEMBLER_MODE_16)
{
outputAppendFormatted("%.4X", address);
} else if (info.flags & IF_DISASSEMBLER_MODE_32)
{
outputAppendFormatted("%.8lX", address);
} else if (info.flags & IF_DISASSEMBLER_MODE_64)
{
outputAppendFormatted("%.16llX", address);
} else
{
assert(0);
}
}
}
void VXBaseInstructionFormatter::outputAppendImmediate(const VXInstructionInfo &info,
const VXOperandInfo &operand, bool resolveSymbols)
{
assert(operand.type == VXOperandType::IMMEDIATE);
uint64_t value = 0;
if (operand.signed_lval && (operand.size != info.operand_mode))
{
if (operand.size == 8)
{
value = static_cast<int64_t>(operand.lval.sbyte);
} else
{
assert(operand.size == 32);
value = static_cast<int64_t>(operand.lval.sdword);
}
if (info.operand_mode < 64)
{
value = value & ((1ull << info.operand_mode) - 1ull);
}
} else
{
switch (operand.size)
{
case 8:
value = operand.lval.ubyte;
break;
case 16:
value = operand.lval.uword;
break;
case 32:
value = operand.lval.udword;
break;
case 64:
value = operand.lval.uqword;
break;
default:
assert(0);
}
}
uint64_t offset = 0;
const char* name = nullptr;
if (resolveSymbols)
{
name = resolveSymbol(info, value, offset);
}
if (name)
{
if (offset)
{
outputAppendFormatted("%s+%.2llX", name, offset);
} else
{
outputAppend(name);
}
} else
{
outputAppendFormatted("%.2llX", value);
}
}
void VXBaseInstructionFormatter::outputAppendDisplacement(const VXInstructionInfo &info,
const VXOperandInfo &operand)
{
assert(operand.offset > 0);
if (operand.base == VXRegister::NONE && operand.index == VXRegister::NONE)
{
// Assume the displacement value is unsigned
assert(operand.scale == 0);
assert(operand.offset != 8);
uint64_t value = 0;
switch (operand.offset)
{
case 16:
value = operand.lval.uword;
break;
case 32:
value = operand.lval.udword;
break;
case 64:
value = operand.lval.uqword;
break;
default:
assert(0);
}
outputAppendFormatted("%.2llX", value);
} else
{
// The displacement value might be negative
assert(operand.offset != 64);
int64_t value = 0;
switch (operand.offset)
{
case 8:
value = operand.lval.sbyte;
break;
case 16:
value = operand.lval.sword;
break;
case 32:
value = operand.lval.sdword;
break;
default:
assert(0);
}
if (value < 0)
{
outputAppendFormatted("-%.2lX", -value);
} else
{
outputAppendFormatted("%s%.2lX", (operand.base != VXRegister::NONE ||
operand.index != VXRegister::NONE) ? "+" : "", value);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void VXIntelInstructionFormatter::outputAppendOperandCast(const VXInstructionInfo &info,
const VXOperandInfo &operand)
{
switch(operand.size)
{
case 8:
outputAppend("byte ptr " );
break;
case 16:
outputAppend("word ptr " );
break;
case 32:
outputAppend("dword ptr ");
break;
case 64:
outputAppend("qword ptr ");
break;
case 80:
outputAppend("tword ptr ");
break;
case 128:
outputAppend("oword ptr ");
break;
case 256:
outputAppend("yword ptr ");
break;
default:
break;
}
}
void VXIntelInstructionFormatter::formatOperand(const VXInstructionInfo &info,
const VXOperandInfo &operand)
{
switch (operand.type)
{
case VXOperandType::REGISTER:
outputAppend(registerToString(operand.base));
break;
case VXOperandType::MEMORY:
if (info.flags & IF_PREFIX_SEGMENT)
{
outputAppendFormatted("%s:", registerToString(info.segment));
}
outputAppend("[");
if (operand.base == VXRegister::RIP)
{
// TODO: Add option
outputAppendAddress(info, VDECalcAbsoluteTarget(info, operand), true);
} else
{
if (operand.base != VXRegister::NONE)
{
outputAppend(registerToString(operand.base));
}
if (operand.index != VXRegister::NONE)
{
outputAppendFormatted("%s%s", operand.base != VXRegister::NONE ? "+" : "",
registerToString(operand.index));
if (operand.scale)
{
outputAppendFormatted("*%d", operand.scale);
}
}
if (operand.offset)
{
outputAppendDisplacement(info, operand);
}
}
outputAppend("]");
break;
case VXOperandType::POINTER:
// TODO: resolve symbols
switch (operand.size)
{
case 32:
outputAppendFormatted("word %.4X:%.4X", operand.lval.ptr.seg,
operand.lval.ptr.off & 0xFFFF);
break;
case 48:
outputAppendFormatted("dword %.4X:%.8lX", operand.lval.ptr.seg, operand.lval.ptr.off);
break;
default:
assert(0);
}
break;
case VXOperandType::IMMEDIATE:
{
outputAppendImmediate(info, operand, true);
}
break;
case VXOperandType::REL_IMMEDIATE:
{
if (operand.size == 8)
{
outputAppend("short ");
}
outputAppendAddress(info, VDECalcAbsoluteTarget(info, operand), true);
}
break;
case VXOperandType::CONSTANT:
outputAppendFormatted("%.2X", operand.lval.udword);
break;
default:
assert(0);
break;
}
}
void VXIntelInstructionFormatter::internalFormatInstruction(const VXInstructionInfo &info)
{
// Append string prefixes
if (info.flags & IF_PREFIX_LOCK)
{
outputAppend("lock ");
}
if (info.flags & IF_PREFIX_REP)
{
outputAppend("rep ");
} else if (info.flags & IF_PREFIX_REPNE)
{
outputAppend("repne ");
}
// Append the instruction mnemonic
outputAppend(Internal::VDEGetInstructionMnemonicString(info.mnemonic));
// Append the first operand
if (info.operand[0].type != VXOperandType::NONE)
{
outputAppend(" ");
bool cast = false;
if (info.operand[0].type == VXOperandType::MEMORY)
{
if (info.operand[1].type == VXOperandType::IMMEDIATE ||
info.operand[1].type == VXOperandType::CONSTANT ||
info.operand[1].type == VXOperandType::NONE ||
(info.operand[0].size != info.operand[1].size))
{
cast = true;
} else if (info.operand[1].type == VXOperandType::REGISTER &&
info.operand[1].base == VXRegister::CL)
{
switch (info.mnemonic)
{
case VXInstructionMnemonic::RCL:
case VXInstructionMnemonic::ROL:
case VXInstructionMnemonic::ROR:
case VXInstructionMnemonic::RCR:
case VXInstructionMnemonic::SHL:
case VXInstructionMnemonic::SHR:
case VXInstructionMnemonic::SAR:
cast = true;
break;
default:
break;
}
}
}
if (cast)
{
outputAppendOperandCast(info, info.operand[0]);
}
formatOperand(info, info.operand[0]);
}
// Append the second operand
if (info.operand[1].type != VXOperandType::NONE)
{
outputAppend(", ");
bool cast = false;
if (info.operand[1].type == VXOperandType::MEMORY &&
info.operand[0].size != info.operand[1].size &&
((info.operand[0].type != VXOperandType::REGISTER) ||
((info.operand[0].base != VXRegister::ES) &&
(info.operand[0].base != VXRegister::CS) &&
(info.operand[0].base != VXRegister::SS) &&
(info.operand[0].base != VXRegister::DS) &&
(info.operand[0].base != VXRegister::FS) &&
(info.operand[0].base != VXRegister::GS))))
{
cast = true;
}
if (cast)
{
outputAppendOperandCast(info, info.operand[1]);
}
formatOperand(info, info.operand[1]);
}
// Append the third operand
if (info.operand[2].type != VXOperandType::NONE)
{
outputAppend(", ");
bool cast = false;
if (info.operand[2].type == VXOperandType::MEMORY &&
(info.operand[2].size != info.operand[1].size))
{
cast = true;
}
if (cast)
{
outputAppendOperandCast(info, info.operand[2]);
}
formatOperand(info, info.operand[2]);
}
// Append the fourth operand
if (info.operand[3].type != VXOperandType::NONE)
{
outputAppend(", ");
formatOperand(info, info.operand[3]);
}
}
VXIntelInstructionFormatter::VXIntelInstructionFormatter()
: VXBaseInstructionFormatter()
{
}
VXIntelInstructionFormatter::VXIntelInstructionFormatter(VXBaseSymbolResolver* symbolResolver)
: VXBaseInstructionFormatter(symbolResolver)
{
}
VXIntelInstructionFormatter::~VXIntelInstructionFormatter()
{
}
}
}